• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
NIE Zhichao, YAN Yangxian, HONG Jiating, LIAO Hangyu, SONG Wenlong, ZOU Jinming, ZHANG Xuehui. Effect of Ti2AlC Particle Size Distribution on Microstructure and Properties of TiC0.5-Al2O3/Cu Composites[J]. Materials and Mechanical Engineering, 2023, 47(3): 66-71. DOI: DOI: 10.11973/jxgccl202303012
Citation: NIE Zhichao, YAN Yangxian, HONG Jiating, LIAO Hangyu, SONG Wenlong, ZOU Jinming, ZHANG Xuehui. Effect of Ti2AlC Particle Size Distribution on Microstructure and Properties of TiC0.5-Al2O3/Cu Composites[J]. Materials and Mechanical Engineering, 2023, 47(3): 66-71. DOI: DOI: 10.11973/jxgccl202303012

Effect of Ti2AlC Particle Size Distribution on Microstructure and Properties of TiC0.5-Al2O3/Cu Composites

More Information
  • Received Date: February 24, 2022
  • Revised Date: February 13, 2023
  • Ti2AlC powder with different particle size distribution was obtained by wet ball milling for different times, and then mixed with Cu2O powder and copper powder to prepare TiC0.5-Al2O3/Cu composite by discharge plasma sintering. The effect of particle size distribution of the Ti2AlC powder on microstructure and properties of composites was studied. The results show that when the submicron particle volume fraction of the Ti2AlC powder increased from 0 to 70.27%, the reinforcement particles TiC0.5 and Al2O3 dispersed in the matrix more evenly; when the volume fraction of submicron particles was 98.07%, the reinforcement particles aggregated. With increasing the submicron particle volume fraction, the conductivity and relative density of the composites decreased first and then increased, while the hardness and yield strength increased first and then decreased.When the submicron particle volume fraction reached 70.27%, the composite had the best comprehensive performance.
  • [1]
    LI C G,XIE Y H,ZHOU D S,et al.A novel way for fabricating ultrafine grained Cu-4.5 vol% Al2O3 composite with high strength and electrical conductivity[J].Materials Characterization,2019,155:109775.
    [2]
    NEED R F,ALEXANDER D J,FIELD R D,et al.The effects of equal channel angular extrusion on the mechanical and electrical properties of alumina dispersion-strengthened copper alloys[J].Materials Science and Engineering:A,2013,565:450-458.
    [3]
    刘轶伦.高速铁路Cu-Cr-Zr合金承导线对连续挤压工艺的适应性[J].材料导报,2020,34(8):8131-8135.

    LIU Y L.Adaptability research on Cu-Cr-Zr alloy for high speed railway overhead contact lines during continuous extrusion process[J].Materials Reports,2020,34(8):8131-8135.
    [4]
    ZHANG X H,LI X X,CHEN H,et al.Investigation on microstructure and properties of Cu-Al2O3 composites fabricated by a novel in situ reactive synthesis[J].Materials & Design,2016,92:58-63.
    [5]
    WANG X L,LI J R,ZHANG Y,et al.Improvement of interfacial bonding and mechanical properties of Cu-Al2O3 composite by Cr-nanoparticle-induced interfacial modification[J].Journal of Alloys and Compounds,2017,695:2124-2130.
    [6]
    SADOUN A M,FATHY A.Experimental study on tribological properties of Cu-Al2O3 nanocomposite hybridized by graphene nanoplatelets[J].Ceramics International,2019,45(18):24784-24792.
    [7]
    ELKADY O A M,ABU-OQAIL A,EWAIS E M M,et al.Physico-mechanical and tribological properties of Cu/h-BN nanocomposites synthesized by PM route[J].Journal of Alloys and Compounds,2015,625:309-317.
    [8]
    蒋晔,颜建辉,李茂键.不同SPS烧结温度下制备WS2-Cu复合材料及其摩擦磨损性能[J].材料导报,2020,34(18):18025-18029.

    JIANG Y,YAN J H,LI M J.Preparation of WS2-Cu composites under different SPS sintering temperatures and their friction and wear properties[J].Materials Reports,2020,34(18):18025-18029.
    [9]
    HUANG F,WANG H,YANG B,et al.Uniformly dispersed Y2O3 nanoparticles in nanocrystalline copper matrix via multi-step ball milling and reduction process[J].Materials Letters,2019,242:119-122.
    [10]
    ZARRINFAR N,KENNEDY A R,SHIPWAY P H.Reaction synthesis of Cu-TiCx master-alloys for the production of copper-based composites[J].Scripta Materialia,2004,50(7):949-952.
    [11]
    ZARRINFAR N,SHIPWAY P H,KENNEDY A R,et al.Carbide stoichiometry in TiCx and Cu-TiCx produced by self-propagating high-temperature synthesis[J].Scripta Materialia,2002,46(2):121-126.
    [12]
    HU W Q,HUANG Z Y,CAI L P,et al.Preparation and mechanical properties of TiCx-Ni3(Al,Ti)/Ni composites synthesized from Ni alloy and Ti3AlC2 powders[J].Materials Science and Engineering:A,2017,697:48-54.
    [13]
    LEI C,ZHAI H X,HUANG Z Y,et al.Fabrication,microstructure and mechanical properties of co-continuous TiCx/Cu-Cu4Ti composites prepared by pressureless-infiltration method[J].Ceramics International,2019,45(3):2932-2939.
    [14]
    华文深,吴杏芳,陆华,等.TiCx/Ni3Al复合材料相界面显微结构及界面纳米硬度与弹性模量分布[J].金属学报,2002,38(10):1109-1114.

    HUA W S,WU X F,LU H,et al.Interfacial micro structure and distributions of nanohardness and modulus near interface of TiCx/Ni3Al composites[J].Acta Metallrugica Sinica,2002,38(10):1109-1114.
    [15]
    LIU B L,HUANG S G,VAN HUMBEECK J,et al.Pressureless liquid-phase sintered TiCx-NiTi/Ni cermets[J].Ceramics International,2017,43(12):9512-9521.
    [16]
    GUO L,YANG Y,WEN X C,et al.Synthesis of Cu-based TiCx composites via in situ reaction between CuxTi melt and dissolvable solid carbon[J].Powder Technology,2020,362:375-385.
    [17]
    解玉鹏,暴巾凤.MAX相材料的研究进展[J].吉林化工学院学报,2017,34(11):81-85.

    XIE Y P,BAO J F.Process of MAX phase materials[J].Journal of Jilin Institute of Chemical Technology,2017,34(11):81-85.
    [18]
    LOW I M.An overview of parameters controlling the decomposition and degradation of Ti-based Mn+1AXn phases[J].Materials (Basel,Switzerland),2019,12(3):473.
    [19]
    高立强,周洋,翟洪祥,等.Mn+1AXn三元层状陶瓷增强铜基复合材料的研究进展[J].材料导报,2006,20(增刊2):397-400.

    GAO L Q,ZHOU Y,ZHAI H X,et al.Research status and progress of Mn+1AXn/Cu composites[J].Materials Reports,2006,20(S2):397-400.
    [20]
    LIAN W Q,MAI Y J,WANG J,et al.Fabrication of graphene oxide-Ti3AlC2 synergistically reinforced copper matrix composites with enhanced tribological performance[J].Ceramics International,2019,45(15):18592-18598.
    [21]
    DASH K,DASH A.In-situ formation of 2D-TiCx in Cu-Ti2AlC composites:An interface reaction study[J].Materials Letters,2021,284:128935.
    [22]
    YAN Y X,ZOU J M,ZHANG X H,et al.Investigation on microstructure and properties of TiC0.5-Al2O3/Cu composites fabricated by a novel in situ reactive synthesis[J].Ceramics International,2021,47(13):18858-18865.
    [23]
    ROCKY B P,WEINBERGER C R,DANIEWICZ S R,et al.Carbide nanoparticle dispersion techniques for metal powder metallurgy[J].Metals,2021,11(6):871.
    [24]
    白玲,葛昌纯,沈卫平.放电等离子烧结技术[J].粉末冶金技术,2007,25(3):217-223.

    BAI L,GE C C,SHEN W P.Spark plasma sintering technology[J].Powder Metallurgy Technology,2007,25(3):217-223.
    [25]
    黄文进,王泽杰,杜婉萍,等.原料粒度对固相合成锰酸锂正极电化学性能研究[J].江西冶金,2020,40(3):12-17.

    HUANG W J,WANG Z J,DU W P,et al.Study on the particle size of raw materials to the electrochemical performance of solid-phase synthesis of lithium manganate cathode[J].Jiangxi Metallurgy,2020,40(3):12-17.
    [26]
    LEE W,SEONG J,YOON Y,et al.Synthesis of TiC reinforced Ti matrix composites by spark plasma sintering and electric discharge sintering:A comparative assessment of microstructural and mechanical properties[J].Ceramics International,2019,45(7):8108-8114.
    [27]
    王云,谢小豪,汪艳亮,等.利用废钨催化剂制备高纯仲钨酸铵工艺研究[J].江西冶金,2019,39(1):15-20.

    WANG Y,XIE X H,WANG Y L,et al.A process study on preparation of super high-purity APT from waste catalyst containing tungsten[J].Jiangxi Metallurgy,2019,39(1):15-20.
    [28]
    孙科,刘锦平,王靖. 放电等离子烧结制备镍掺杂石墨-铜复合材料组织性能研究[J].有色金属科学与工程,2020,11(3):65-72.

    SUN K, LIU J P, WANG J. Study on the microstructure and properties of nickel-doped graphite-copper composites prepared by spark plasma sintering[J].Nonferrous Metals Science and Engineering,2020,11(3):65-72.
    [29]
    AKHTAR F,ASKARI S J,SHAH K A,et al.Microstructure,mechanical properties,electrical conductivity and wear behavior of high volume TiC reinforced Cu-matrix composites[J].Materials Characterization,2009,60(4):327-336.

Catalog

    Article views (0) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return